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Abstract

A well-known tool in conventional (von Neumann) quantum mechanics is
the self-adjoint extension technique for symmetric operators. It is used,
e.g., for the construction of Dirac–Hermitian Hamiltonians with point-
interaction potentials. Here we reshape this technique to allow for the
construction of pseudo-Hermitian (J -self-adjoint) Hamiltonians with complex
point interactions. We demonstrate that the resulting Hamiltonians are
bijectively related to the so-called hypermaximal neutral subspaces of the defect
Krein space of the symmetric operator. This symmetric operator is allowed to
have arbitrary but equal deficiency indices 〈n, n〉. General properties of the C
operators for these Hamiltonians are derived. A detailed study of C-operator
parametrizations and Krein type resolvent formulae is provided for J -self-
adjoint extensions of symmetric operators with deficiency indices 〈2, 2〉. The
technique is exemplified on 1D pseudo-Hermitian Schrödinger and Dirac
Hamiltonians with complex point-interaction potentials.

PACS numbers: 02.30.Tb, 03.65.−w
Mathematics Subject Classification: 47A55, 81Q05, 81Q15

1. Introduction

The use of non-Hermitian operators and indefinite Hilbert space structures in quantum
mechanics dates back to the early 1940s [1, 2]. The interest in this subject strongly increased
after it was discovered in 1998 that complex Hamiltonians possessing PT -symmetry (the
product of parity and time reversal) can have a real spectrum (such as self-adjoint operators)
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[3]. This gave rise to a mathematically consistent complex extension of conventional quantum
mechanics (CQM) into PT quantum mechanics (PTQM), see e.g. the review paper [4] and
references therein.

During the past ten years PTQM models have been analyzed with a wealth of technical
tools (for an overview see [5–8]). Most prominent ones concern Bethe Ansatz techniques
(to prove the reality of the spectrum for the Hamiltonian with a complex cubic potential ix3

which originated a lot of interest) [9], various global approaches based on the extension of
differential operators into the complex coordinate plane [10–13], SUSY approaches [14–17],
PT -symmetric perturbations of Hermitian operators [18], Moyal product [19, 20] and Lie
algebraic [21] techniques. We would also like to mention more recent considerations on
spectral degeneracies [22–25].

Apart from these techniques and applications, one of the most important concepts to place
PT -symmetry in a general mathematical context remains the concept of pseudo-Hermiticity
[26]. A linear densely defined operator A acting in a Hilbert space H with the inner product
(·, ·) is called pseudo-Hermitian if its adjoint A∗ satisfies the condition

A∗η = ηA, (1.1)

where η is an invertible bounded self-adjoint operator in H. Since a Hilbert space H endowed
with an indefinite metric [f, g]η = (ηf, g) is an example of a Krein space with a fundamental
symmetry J = η|η|−1 (here |η| =

√
η2 is the modulus of η) [27, 28], one can reduce the

investigation of pseudo-Hermitian operators to the study of J -self-adjoint operators in a Krein
space [29–33].

We recall that a linear densely defined operator A acting in a Krein space (H, [·, ·]J ) with a
fundamental symmetry J (i.e., J = J ∗ and J 2 = I ) and an indefinite metric [·, ·]J = (J ·, ·) is
called J -self-adjoint if A∗J = JA. Obviously, J -self-adjoint operators are pseudo-Hermitian
ones in the sense of (1.1). We note that there exists an alternative rigorous approach to
PT -symmetric problems where J is assumed to be an antilinear involution (conjugation)
[34–38].

In contrast to self-adjoint operators in Hilbert spaces (which necessarily have a purely real
spectrum), self-adjoint operators in Krein spaces, in general, have a spectrum which is only
symmetric with respect to the real axis [27, 28]. Pairwise complex conjugate eigenvalues, as
part of the discrete spectrum, are connected with spontaneously broken PT -symmetry. This
means that although the Hamiltonian will have PT -symmetry, its eigenfunctions will not be
PT -symmetric. The real discrete spectrum corresponds to the sector of the so-called exact
PT -symmetry where in addition to the Hamiltonian also its eigenfunctions arePT -symmetric.

One of the key points in PTQM is the description of a hidden symmetry C [39] which is
present for a given PT -symmetric Hamiltonian A in the sector of exact PT -symmetry.

By analogy with [4], the definition of C-symmetry for the case of J -self-adjoint operators
can be formalized as follows.

Definition 1.1. A J -self-adjoint operator A has the property of C-symmetry if there exists a
bounded linear operator C in H such that (i) C2 = I ; (ii) JC > 0; (iii) AC = CA.

The operator C shows some rough analogy with the charge conjugation operator in
quantum field theory. The existence of C provides an inner product (·, ·)C = [C·, ·]J whose
associated norm is positive definite and the dynamics generated by A is therefore governed by
a unitary time evolution. However, the operator C depends on the choice of A and its finding
is a nontrivial problem [40–43]. A generalization from bounded to unbounded C operators
has been recently discussed in [44]. Another kind of generalized C operator can arise in
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connection with model classes of interacting relativistic quantum fields with indefinite metrics
and satisfying all Morchio–Strocchi axioms, see, e.g. [46] (and references therein).

In this paper, we are going to study J -self-adjoint operators with C-symmetries within an
extension theory approach. This is motivated by the well-known fact that not allPT -symmetric
operators are P-self-adjoint in a Krein space (KP , [·, ·]P), but rather that they will be J -self-
adjoint in (KJ , [·, ·]J ) with suitably adapted involution operators J . Therefore, we choose
J -self-adjointness as the basic (fundamental) starting point and develop a corresponding
most general technical framework. Subsequently, the technique is applied to models with
concrete PT -symmetric boundary conditions, i.e. the complex potential, typical for PTQM
Hamiltonians, is induced via point interactions which are described by an operator extension
technique. The extension technique is a standard mathematical tool [45] in CQM and is widely
used to efficiently describe point interactions [47, 48]. PTQM-related considerations based
on this technique can be found in [30, 49, 50].

The paper is organized as follows. Section 2 contains an abstract study of C-symmetries
in a Krein space approach and has an auxiliary character. In section 3, we describe all J -self-
adjoint extensions of a given symmetric operator Asym (under the condition AsymJ = JAsym)
and, for the case of deficiency indices 〈2, 2〉, we propose a general method allowing us: (i) to
describe the set of J -self-adjoint extensions AM(U) of Asym with C-symmetries; (ii) to construct
the corresponding C-symmetries in a simple explicit form (family of Cθ,ω-symmetries); (iii)
to establish a Krein-type resolvent formula for J -self-adjoint extensions AM(U) with C-
symmetries. Section 4 illustrates the obtained results on the examples of a Schrödinger
operator with general zero-range potential and a one-dimensional Dirac Hamiltonian with
point perturbation.

Let us briefly comment on the used notations. D(A) and R(A) denote the domain and
the range of a linear operator A, respectively. A �D means the restriction of A on a set D.

2. J -self-adjoint operators with C-symmetries

2.1. Elements of Krein space theory

Here all necessary results of Krein space theory are presented in a form convenient for our
exposition. Their proofs and detailed analysis can be found in [27, 28].

Let H be a Hilbert space with an inner product (·, ·) and with a fundamental symmetry
(involution) J (i.e., J = J ∗ and J 2 = I ). The corresponding orthoprojectors P+ = 1/2(I +J ),

P− = 1/2(I − J ) determine the fundamental decomposition of H :

H = H+ ⊕ H−, H− = P−H, H+ = P+H. (2.1)

The space H endowed with the indefinite inner product (indefinite metric)

[x, y]J := (Jx, y), ∀ x, y ∈ H (2.2)

is called a Krein space (H, [·, ·]J ).
A subspace L ⊂ H is called hypermaximal neutral if L coincides with its J -orthogonal

complement: L = L[⊥]J = {x ∈ H : [x, y]J = 0,∀ y ∈ L}. Hypermaximal neutral subspaces
exist only in the case where dim H+ = dim H−.

A subspace L ⊂ H is called non-negative, positive, uniformly positive if, respectively,
[x, x]J � 0, [x, x]J > 0, [x, x]J � α2‖x‖2, α ∈ R for all x ∈ L\{0}. Non-positive, negative
and uniformly negative subspaces are introduced similarly. The subspaces H± in (2.1) are
examples of uniformly positive and uniformly negative subspaces and they possess the property
of maximality in the corresponding classes (i.e., H+ (H−) does not belong as a subspace to
any uniformly positive (negative) subspace).
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Let a subspace L+ be maximal uniformly positive. Then its J -orthogonal complement
L− = L

[⊥]J
+ is a maximal uniformly negative subspace of H, and the direct J -orthogonal sum

H = L+[+̇]J L− (2.3)

gives the decomposition of H onto its positive L+ and negative L− parts (the brackets [·]J
mean the orthogonality with respect to the indefinite metric).

The subspaces L+ and L− in (2.3) can be described as L+ = (I + K)H+ and L− =
(I + Q)H−, where K : H+ → H− is a contraction and Q = K∗ : H− → H+ is the adjoint
of K.

The self-adjoint operator T = KP+ +K∗P− acting in H is called an operator of transition
from the fundamental decomposition (2.1) to (2.3). Obviously,

L+ = (I + T )H+, L− = (I + T )H−. (2.4)

Furthermore, the projectors PL± : H → L± onto L± with respect to the decomposition (2.3)
have the form

PL− = (I − T )−1(P− − T P+), PL+ = (I − T )−1(P+ − T P−). (2.5)

The collection of operators of transition admits a simple ‘external’ description. Namely,
a self-adjoint operator T in H is an operator of transition if and only if

‖T ‖ < 1 and JT = −T J. (2.6)

2.2. J -self-adjoint operators with C-symmetries

The following statement characterizes the structure of J -self-adjoint operators with C-
symmetries.

Theorem 2.1 ([30]). A J -self-adjoint operator A acting in a Krein space (H, [·, ·]J ) has the
property of C-symmetry if and only if A admits the decomposition

A = A+[+̇]J A−, A+ = A � L+, A− = A � L− (2.7)

with respect to a certain choice of the J -orthogonal decomposition (2.3) of H. In that case

C = PL+ − PL− = (I + T )(I − T )−1J, (2.8)

where T is the operator of transition from the fundamental decomposition (2.1) to (2.3).

Remark 2.1. Since T is a self-adjoint operator and ‖T ‖ < 1, formula (2.8) can be rewritten
as C = eQJ , where Q(= ln (I + T )(I − T )−1) is a bounded self-adjoint operator in H. Then
the condition C2 = I takes the form eQJ = Je−Q which implies QJ = −JQ. Therefore,
one can rewrite (2.8) as

C = eQJ = eQ/2Je−Q/2. (2.9)

Set (·, ·)C ≡ [C·, ·]J . Due to (2.9), (·, ·)C = (e−Q/2·, e−Q/2·). The sesquilinear form (·, ·)C
determines a new inner product in H that is equivalent to the initial one. Since C = PL+ −PL−
(by (2.8)), the J -orthogonal decomposition (2.3) is transformed into the orthogonal sum
H = L+ ⊕C L− with respect to the inner product (·, ·)C , and the decomposition (2.7) takes the
form A = A+⊕CA−.

Corollary 2.1. Let A be a J -self-adjoint operator. The following statements are equivalent:

(i) A has the property of C-symmetry;
(ii) the operators A+ and A− in the decomposition A = A+⊕CA− are self-adjoint in the

Hilbert spaces L+ and L− with the inner product (·, ·)C;
(iii) the operator H = e−Q/2 A eQ/2 is self-adjoint in H.
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Proof. By (2.8) the restriction of (·, ·)C on the subspaces L+ and L− coincides with [·, ·]J
and −[·, ·]J , respectively. This means that the assumption of J -self-adjointness of A is
equivalent to the property of self-adjointness of A± = A � L± with respect to (·, ·)C . Hence,
(i) ⇐⇒ (ii).

By virtue of (ii), A is self-adjoint in H with respect to the inner product (·, ·)C . Therefore,

(e−Q/2Ax, e−Q/2y) = (Ax, y)C = (x,Ay)C = (e−Q/2x, e−Q/2Ay), ∀ x, y ∈ H.

This means that the operator H = e−Q/2AeQ/2 is self-adjoint in H with respect to the initial
product (·, ·) if and only if A is self-adjoint with respect to (·, ·)C . Thus (ii) ⇐⇒ (iii). �

Corollary 2.2. If a J -self-adjoint operator A has the property of C-symmetry then its spectrum
σ(A) is real, and the adjoint operator C∗ provides the property of C-symmetry for A∗.

Proof. The reality of σ(A) follows from the assertion (ii) of Corollary 2.1. If A has C-
symmetry, the adjoint C∗ satisfies all conditions of definition 1.1 for A∗. So, C∗ provides the
property of C-symmetry for A∗. �

Remark 2.2. In the context of PTQM, the existence of an equivalence mapping (similarity
transformation) eQ/2 between a pseudo-Hermitian operator A and a Hermitian operator H was
first demonstrated by Mostafazadeh in [51]. Operators A which are similarity mapped onto
Hermitian operators H by the positive definite Hermitian eQ/2 have been earlier studied in [52]
and are also known as quasi-Hermitian operators. The C operator was introduced in PTQM
by Bender, Brody and Jones in [39]. As it is obvious from (2.9), C as a dynamically adapted
(A-dependent) involution is a similarity transformed version of the original involution J .

3. Extension theory approach

3.1. Preliminaries to extension theory. General case

Let Asym be a closed symmetric densely defined operator in H with the equal deficiency indices
〈n, n〉 (n ∈ N ∪ {∞}). Denote by Ni = H � R(Asym + iI ) and N−i = H � R(Asym − iI )

the defect subspaces of Asym and consider the Hilbert space M = N−i +̇ Ni with the inner
product

(x, y)M = 2[(xi, yi) + (x−i , y−i )] x = xi + x−i , y = yi + y−i {x±i , y±i} ⊂ N±i .

(3.1)

Obviously, the operator Z(xi + x−i ) = xi − x−i is a fundamental symmetry in the Hilbert
space M and it acts as an identity operator on Ni and as a minus identity operator on N−i .

In what follows we assume that

AsymJ = JAsym, (3.2)

where J is a fundamental symmetry in H. Then the subspaces N±i reduce J and the restriction
J � M gives rise to the fundamental symmetry in the Hilbert space M. Moreover, according
to the properties of Z mentioned above, JZ = ZJ and JZ is a fundamental symmetry in M.
Therefore, the sesquilinear form

[x, y]JZ = (JZx, y)M = 2[(Jxi, yi) − (Jx−i , y−i )] (3.3)

defines an indefinite metric on M.
According to von-Neumann formulae any closed intermediate extension A of Asym (i.e.,

Asym ⊂ A ⊂ A∗
sym) is uniquely determined by the choice of a subspace M ⊂ M. This means

5
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that D(A) = D(Asym) +̇ M and

Af = A∗
sym(u + x) = Asymu + iZx, ∀u ∈ D(Asym), ∀ x ∈ M. (3.4)

Taking (3.2)–(3.4) into account we immediately derive

[A1f1, f2]J − [f1, A2f2]J = i[x1, x2]JZ, ∀ fj = uj + xj ∈ D(Aj ), xj ∈ Mj (3.5)

for the arbitrary intermediate extensions A1 and A2 of Asym which are defined by the subspaces
M1 and M2, respectively (see, e.g., [53, lemma 9.6]).

It follows from (3.5) that an extension A ⊃ Asym defined by M is a J -self-adjoint operator
if and only if

M = M [⊥]JZ = {y ∈ M : [x, y]JZ = 0,∀ x ∈ M}, (3.6)

i.e., if M is a hypermaximal neutral subspace of the Krein space (M, [·, ·]JZ).
The following statement is a ‘folklore’ result of extension theory.

Proposition 3.1. Let AsymJ = JAsym. Then the correspondence A ↔ M determined by
(3.4) is a bijection between the set of all J -self-adjoint extensions A of Asym and the set of all
hypermaximal neutral subspaces M of (M, [·, ·]JZ).

We note that the choice of J would via the J -induced Krein-space metric [·, ·]JZ define
the concrete parametrization of the hypermaximal neutral subspaces6.

To underline the relationship A ↔ M in (3.6) we will use the notation AM for J -self-
adjoint extensions A of Asym determined by (3.4).

Theorem 3.1. Let AsymJ = JAsym and let AsymC = CAsym, where C is a bounded linear
operator in H such that C2 = I and JC > 0. Then a J -self-adjoint extension AM of Asym has
C-symmetry if and only if CM = M .

Proof. Since Asym commutes with J and C one gets AsymeQ = eQAsym, where the self-adjoint
operator eQ is defined in (2.9). But then AsymC∗ = AsymJeQ = JeQAsym = C∗Asym. The
relations C∗Asym = AsymC∗ and C2 = I imply CN± = N± and hence, CM = M.

Using the identity CA∗
sym = A∗

symC which immediately follows from C∗Asym = AsymC∗

one concludes that CAM = AMC ⇐⇒ CD(AM) = D(AM). Taking the relations D(AM) =
D(Asym) +̇ M, CD(Asym) = D(Asym) and CM = M into account one gets CAM = AMC ⇐⇒
CM = M . Theorem 3.1 is proved. �

Remark 3.1. The commutation relation AsymJ = JAsym in theorem 3.1 is a natural condition
in the present approach because the complex-potential properties of the J -self-adjoint operators
A are induced only by the boundary-condition-related extension families (see below). A
weaker J -symmetric condition A ⊂ JA∗J would allow for a consideration of PT -symmetric
Hamiltonians with regular PT -symmetric potentials. But such models would require for
extension techniques which should be well adapted to the specifics of the concrete potentials.
Here, we focus on purely boundary induced PT -symmetric (J -symmetric) set-ups.

3.2. The case of deficiency indices 〈2, 2〉
In what follows we assume that the symmetric operator Asym has the deficiency indices 〈2, 2〉,
and there exists at least one J -self-adjoint extension AM of Asym. In that case dim M = 4 and

6 The physically relevant parametrization freedom of the pseudo-Hermitian metric η is via J = η|η|−1 naturally
encoded in J .
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each of the orthogonal subspaces of M:

M++ = (I + Z)(I + J )M; M−− = (I − Z)(I − J )M;
M+− = (I + Z)(I − J )M; M−+ = (I − Z)(I + J )M

is one dimensional. (Otherwise, Z = J or Z = −J and there exist no J -self-adjoint extensions
of Asym—in contradiction to the above assumption.)

Let {e±±} be an orthonormal basis of M such that M±± = 〈e±±〉. It follows from the
definition of M±± that

Je++ = e++, J e−+ = e−+, J e+− = −e+−, J e−− = −e−−;
Ze++ = e++, Ze−+ = −e−+, Ze+− = e+−, Ze−− = −e−−.

(3.7)

This means that the fundamental decomposition of the Krein space (M, [·, ·]JZ) has the
form

M = M− ⊕ M+, M− = 〈e+−, e−+〉, M+ = 〈e++, e−−〉. (3.8)

According to general theory [27], an arbitrary hypermaximal neutral subspace M of
(M, [·, ·]JZ) can be uniquely determined by a unitary mapping of M− onto M+. Since
dim M+ = dim M− = 2 the set of unitary mappings M− → M+ is determined by the set of
unitary matrices

U = eiφ

(
q eiγ r eiξ

−r e−iξ q e−iγ

)
, q2 + r2 = 1, φ, γ, ξ ∈ [0, 2π). (3.9)

(We have used the standard representation U(2) ∼= U(1) × SU(2) for the reducible U(2)

group elements [54].)
In other words, the decomposition (3.8) and representation (3.9) allow one to describe a

hypermaximal neutral subspace M of (M, [·, ·]JZ) as a linear span

M = M(U) = 〈d1, d2〉 (3.10)

of elements

d1 = e++ + q ei(φ+γ )e+− + r ei(φ+ξ)e−+;
d2 = e−− − r ei(φ−ξ)e+− + q ei(φ−γ )e−+.

(3.11)

By proposition 3.1, formula (3.10) provides a one-to-one correspondence between the
domains D(AM(U)) = D(Asym) +̇ M(U) of J -self-adjoint extensions AM(U) of Asym and the
unitary matrices U.

Lemma 3.1. A J -self-adjoint extension AM(U) defined by (3.4) and (3.10) is self-adjoint if
and only if q = 0.

Proof. According to proposition 3.1, a J -self-adjoint operator AM(U) is self-adjoint if and
only if M(U) is also a hypermaximal neutral subspace in the Krein space (M, [·, ·]Z).

By (3.7) the fundamental decomposition of (M, [·, ·]Z) has the form

M = N−i ⊕ Ni , N−i = 〈e−+, e−−〉, Ni = 〈e++, e+−〉, (3.12)

where N−i and Ni are, respectively, negative and positive subspaces. Taking (3.12) into
account, we derive from (3.10) that M(U) is a hypermaximal neutral subspace of (M, [·, ·]Z)

if and only if q = 0. �

Lemma 3.2. A J -self-adjoint extension AM(U) does not have the property of C-symmetry if
r = 0.

7
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Proof. If r = 0, then d1 = e++ + ei(φ+γ )e+− ∈ M(U) ∩ Ni (on the basis of (3.12)). In that
case AM(U)d1 = id1 by (3.4). Therefore, AM(U) has a non-real spectrum and there are no
C-symmetries for AM(U) (see corollary 2.2). �

Remark 3.2. Lemmas 3.1, 3.2 and the constraint q2 + r2 = 1 in (3.9) show that there should
exist a critical angle σc ∈ (0, 2π) in q = sin(σ ), r = cos(σ ) where the C-symmetry relation
AM(U)C = CAM(U) breaks down7.

Remark 3.3. In the case of deficiency indices 〈n, n〉 a natural parametrization for all J -self-
adjoint extensions is given by a matrix U(n) ∼= U(1) × SU(n) : M− → M+.

3.3. Family of Cθ,ω-symmetries

Let R be a fundamental symmetry in H (i.e., R2 = I and R = R∗) such that

AsymR = RAsym, and JR = −RJ. (3.13)

The first identity in (3.13) means that the subspaces N±i reduce R and the restriction
R � M is a fundamental symmetry in the Hilbert space M. The second identity and the
definition of the elements {e±±} imply

Re++ = e+−, Re+− = e++, Re−− = e−+, Re−+ = e−−. (3.14)

Furthermore, the relation JR = −RJ enables one to state that the operator

Rω = R eiωJ = e−iωJ/2 R eiωJ/2, ω ∈ [0, 2π) (3.15)

is an involution
(
R2

ω = I, Rω = R∗
ω

)
in H and JRω = −RωJ . It follows from (3.7), (3.14)

and (3.15) that

Rωe++ = eiω e+−, Rωe+− = e−iω e++,

Rωe−− = e−iω e−+, Rωe−+ = eiω e−−.
(3.16)

Let us consider the collection of the operators

Tθ,ω = 1 − θ

1 + θ
Rω, θ > 0, ω ∈ [0, 2π).

Obviously, Tθ,ω is self-adjoint in H, JTθ,ω = −Tθ,ωJ and ‖Tθ,ω‖ < 1. By (2.4) and (2.6),
Tθ,ω is the operator of transition from (2.1) to the decomposition

H = Lθ,ω
+ [⊕]J L

θ,ω
− , Lθ,ω

+ = (I + Tθ,ω)H+, L
θ,ω
− = (I + Tθ,ω)H−. (3.17)

Let us introduce the notation

αθ = 1
2 (θ + θ−1) = cosh(χ) and βθ = 1

2 (θ − θ−1) = sinh(χ), θ = eχ

so that α2
θ − β2

θ = 1. Due to (2.8) the operator Cθ,ω associated with (3.17) has the form

Cθ,ω = (I + Tθ,ω)(I − Tθ,ω)−1J = [αθI − βθRω]J = e−χRω J. (3.18)

In particular C1,ω = J,∀ω ∈ [0, 2π). Moreover, due to (2.9) one has Q = −χRω.
By theorem 2.1 and (3.18) the decomposition (3.17) can be rewritten as

H = Lθ,ω
+ ⊕C L

θ,ω
− , Lθ,ω

+ = 1
2 (I + Cθ,ω)H, L

θ,ω
− = 1

2 (I − Cθ,ω)H. (3.19)

(The formulae (3.17) and (3.19) determine the same decomposition of H; the first formula
emphasizes the J -orthogonality of L

θ,ω
± , the second formula illustrates the orthogonality of

L
θ,ω
± with respect to the inner product (·, ·)C .)

7 These critical configurations will be analyzed in a separate paper.
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Lemma 3.3. The following relations hold:

C2
θ,ω = I, C∗

θ,ω = C1/θ,ω JCθ1,ωCθ2,ω = Cθ2/θ1,ω. (3.20)

Furthermore, ‖Cθ,ω‖ = θ if θ � 1 and ‖Cθ,ω‖ = 1/θ if θ < 1.

Proof. Relations (3.20) immediately follow from (3.15) and (3.18). By virtue of (2.9),
Cθ,ωJ = e−χRω with Rω a bounded self-adjoint operator. According to (3.18),

(e−χRω x, x) = αθ‖x‖2 − βθ(Rωx, x) � (αθ + |βθ |)‖x‖2, ∀ x ∈ H. (3.21)

Obviously, (3.21) turns out to be identity for any x ∈ ker(Rω + sign(βθ )I ). Therefore,
‖Cθ,ω‖ = ‖e−χRω‖ = αθ + |βθ | since e−χRω is a positive self-adjoint operator. Recalling the
definition of αθ and βθ we complete the proof of the lemma. �

3.4. The description of J -self-adjoint extensions with Cθ,ω-symmetries.

Let AM(U) be a J -self-adjoint extension of Asym defined by (3.4) and (3.10).

Lemma 3.4. A J -self-adjoint extension AM(U) has C1,ω-symmetry if and only if q = 0 (or,
equivalently, AM(U) is self-adjoint).

Proof. A J -self-adjoint extension AM(U) has C1,ω-symmetry ⇐⇒ AM(U)J = JAM(U).
Comparing this with the relation A∗

M(U)J = JAM(U) (since AM(U) is J -self-adjoint) one
derives that A∗

M(U) = AM(U). Applying now lemma 3.1 we complete the proof. �

Definition 3.1. Let ϒ denote the collection of all J -self-adjoint extensions AM(U) having
Cθ,ω-symmetry for any choice of θ and ω:

ϒ = {AM(U) : AM(U)C = CAM(U),∀ θ ∈ (0,∞) ∪ ∀ω ∈ [0, 2π)}.

In analogy with Lie algebra theory [55] it appears natural to call ϒ the extension center.
Obviously, an operator AM(U) ∈ ϒ is self-adjoint (since AM(U) has C1,ω-symmetry) and

it has a special structure closely related to the properties of Asym. One of the possible ways to
describe this structure deals with the concept of supersymmetry (SUSY).

Let H and Q be self-adjoint operators in H. Following [56] we will say that the system
(H, J,Q) possesses supersymmetry if H = Q2 � 0 and JQ = −QJ .

Proposition 3.2. Let AM(U) be a J -self-adjoint extension of Asym. The following statements
are equivalent:

(i) AM(U) belongs to ϒ;
(ii) AM(U)J = JAM(U) and AM(U)R = RAM(U);

(iii) The system
(
A2

M(U), J, RAM(U)

)
has supersymmetry.

Proof. It follows from (3.15) and (3.18) that AM(U) ∈ ϒ if and only if JAM(U) = AM(U)J and
RAM(U) = AM(U)R. So, (i) ⇐⇒ (ii). The latter relation and JR = −RJ mean that Q =
RAM(U) is self-adjoint and JQ = −QJ . Since H = (RAM(U))

2 = A2
M(U) � 0 the system(

A2
M(U), J, RAM(U)

)
has supersymmetry.

Conversely, if
(
A2

M(U), J, RAM(U)

)
has supersymmetry, JRAM(U) = −RAM(U)J or

JAM(U) = AM(U)J . Therefore, the J -self-adjoint operator AM(U) is also self-adjoint. In that
case the self-adjointness of RAM(U) gives RAM(U) = (RAM(U))

∗ = AM(U)R. So, AM(U)

commutes with J and R. Hence, (ii) ⇐⇒ (iii). �
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The following statement gives the description of extension center elements AM(U) ∈ ϒ

in terms of entries of U (see (3.9)).

Proposition 3.3. AM(U) ∈ ϒ ⇐⇒ q = 0 and φ ∈ {π
2 , 3π

2

}
.

Proof. Let AM(U) ∈ ϒ . Since Asym commutes with J and R, the assertion (ii) of
proposition 3.2 can be rewritten as JM(U) = M(U) and RM(U) = M(U).

It follows from (3.7) and the description (3.10) of M(U) that JM(U) = M(U) if and
only if

Jd1 = e++ − q ei(φ+γ ) e+− + r ei(φ+ξ) e−+ ∈ M(U),

Jd2 = −e−− + r ei(φ−ξ) e+− + q ei(φ−γ ) e−+ ∈ M(U).

This is possible if and only if q = 0 (since {e±±} are orthonormal and di have the form (3.11)).
A similar reasoning for RM(U) = M(U) with the use of (3.14) gives

Rd1 = R(e++ + r ei(φ+ξ) e−+) = r ei(φ+ξ)(e−− + r e−i(φ+ξ) e+−) ∈ M(U)

Rd2 = R(e−− − r ei(φ−ξ) e+−) = −r ei(φ−ξ)(e++ − r ei(−φ+ξ) e−+) ∈ M(U),

where r2 = 1. Obviously the latter relations are satisfied if and only if e−iφ = −eiφ . This is
possible when φ = π

2 or φ = 3π
2 . Proposition 3.3 is proved. �

Theorem 3.2. Let AM(U) be a J -self-adjoint extension of Asym and AM(U) �= A∗
M(U) (i.e.

AM(U) is not a self-adjoint operator). Then AM(U) has Cθ,ω-symmetry if and only if

0 < |q| < |cos φ|. (3.22)

In that case ω = γ and θ is determined by the relation q = θ−1−θ
θ−1+θ

cos φ.

Proof. Since Asym commutes with J and R, it commutes with Rω defined by (3.15). This gives
AsymCθ,ω = Cθ,ωAsym (since Cθ,ω has the form (3.18)). Employing theorem 3.1 one concludes
that the property of Cθ,ω-symmetry for AM(U) is equivalent to the relation Cθ,ωM(U) = M(U).
By (3.10), Cθ,ωM(U) = M(U) ⇐⇒ Cθ,ωd1 ∈ M(U) and Cθ,ωd2 ∈ M(U), where di have the
form (3.11).

It follows from (3.7), (3.16) and (3.18) that

Cθ,ωd1 = (αθ + βθq ei(γ +φ−ω))e++ − (βθeiω + αθq ei(γ +φ−ω))e+−
+ αθr ei(ξ+φ) e−+ − βθr ei(ξ+φ+ω) e−−. (3.23)

Taking the definition of d1 and the first and last terms in (3.23) into account one
concludes that Cθ,ωd1 ∈ M(U) ⇐⇒ Cθ,ωd1 = k1d1 + k2d2, where k1 = αθ + βθq ei(γ +φ−ω) and
k2 = −βθr ei(ξ+φ+ω). This is possible if and only if the following equalities are satisfied:

βθqr ei(γ +ξ+2φ−ω) = βθqr ei(−γ +ξ+2φ+ω)

βθq
2 ei(2γ +2φ−ω) + 2αθq ei(γ +φ) + βθ eiω(r2 e2iφ + 1) = 0.

(3.24)

A similar reasoning for Cθ,ωd2 = k̃1d1 + k̃2d2 with k̃1 = −βθr ei(−ξ+φ−ω) and k̃2 =
−αθ − βθq ei(−γ +φ+ω) implies

−βθqr ei(γ−ξ+2φ−ω) = −βθqr ei(−γ−ξ+2φ+ω)

βθq
2 ei(−2γ +2φ+ω) + 2αθq ei(−γ +φ) + βθ e−iω(r2 e2iφ + 1) = 0.

(3.25)

Therefore, AM(U) has Cθ,ω-symmetry if and only if relations (3.24) and (3.25) hold.
Let AM(U) have Cθ,ω-symmetry and AM(U) �= A∗

M(U). Then θ �= 1 (otherwise, AM(U)

turns out to be self-adjoint). Further, q �= 0 (by lemma 3.1), r �= 0 (by lemma 3.2) and

10
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βθ �= 0 (since θ �= 1). Taking these facts into account we derive from (3.24) and (3.25) that
Cθ �=1,ωM(U) = M(U) if and only if

ω = γ and βθq
2 ei(2φ+ω) + 2αθq ei(ω+φ) + βθ eiω(r2 e2iφ + 1) = 0. (3.26)

Since q2 + r2 = 1 (by (3.9)) the second relation in (3.26) can be rewritten as

q = −βθ

αθ

[
eiφ + e−iφ

2

]
= θ−1 − θ

θ−1 + θ
cos φ. (3.27)

Since θ �= 1, the relation (3.27) implies inequality (3.22).
Conversely, let the parameters φ and q of the unitary matrix U (see (3.9)) satisfy (3.22).

Then the corresponding J -self-adjoint extension AM(U) does not have C1,ω-symmetry and
hence AM(U) is not a self-adjoint operator.

The condition (3.22) allows one to choose a parameter θ (θ �= 1) in such a way that
(3.27) holds. Finally setting ω = γ , we satisfy relations (3.26). This means that AM(U) has
Cθ,ω-symmetry for such a choice of ω and θ . Theorem 3.2 is proved. �

Theorem 3.3. A J -self-adjoint extension AM(U) of Asym has Cθ,ω-symmetry if and only if the
matrix U takes the form

U = U(θ, ω,ψ, ξ) = eiφ

αθ

⎛⎜⎝ −βθ cos φ eiω
√

1 + β2
θ sin2 φ eiξ

−
√

1 + β2
θ sin2 φ e−iξ −βθ cos φ e−iω

⎞⎟⎠ , (3.28)

where φ, ξ ∈ [0, 2π).

Proof. Let us consider the case θ �= 1 and φ �∈ {π
2 , 3π

2

}
. Then (3.28) is a particular case of

the general representation of unitary matrices (3.9) with q = − βθ

αθ
cos φ that satisfies (3.22).

This means that the J -self-adjoint operator AM(U) has Cθ,ω-symmetry (by theorem 3.2).
Conversely, let U = ‖uij‖ be determined by (3.9) with φ �∈ {

π
2 , 3π

2

}
and let the

corresponding J -self-adjoint extension AM(U) have Cθ �=1,ω-symmetry. Due to (3.26) and
(3.27), u11 = q ei(φ+γ ) = − βθ

αθ
cos φ ei(φ+ω). But then u22 = − βθ

αθ
cos φ ei(φ−ω) by (3.9).

Similarly,

u12 = r ei(φ+ξ) =
√

1 − q2 ei(φ+ξ) = 1

αθ

√
α2

θ − β2
θ cos2 φ ei(φ+ξ)

= 1

αθ

√
1 + β2

θ sin2 φ ei(φ+ξ),

and

u22 = −r ei(φ−ξ) = − 1

αθ

√
1 + β2

θ sin2 φ ei(φ−ξ).

Hence, the matrix U is determined by (3.28).
Let θ = 1 and let φ be arbitrary. By lemma 3.4 the J -self-adjoint extension AM(U) with

C1,ω-symmetry is self-adjoint and q = 0. In that case the representation (3.9) of U coincides
with (3.28).

Let θ �= 1 and φ ∈ {π
2 , 3π

2

}
. It follows from theorem 3.2 that AM(U) has to be self-adjoint

(otherwise, the inequality (3.22) must be satisfied, which is impossible since φ ∈ {π
2 , 3π

2 }).
Hence, q = 0 (by lemma 3.1) and the representation (3.9) of U coincides with (3.28).
Theorem 3.3 is proved. �
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3.5. Completeness of the Cθ,ω-symmetry family

As was mentioned above (see the proof of theorem 3.2), an arbitrary operator Cθ,ω from
the two-parameter set {Cθ,ω} commutes with Asym. We are going to show that, in a certain
sense, this family is complete in the set of C-symmetries commuting with Asym. Precisely, we
show that an arbitrary J -self-adjoint extension AM(U)⊃Asym with the property of C-symmetry,
where C commutes with Asym, possesses Cθ,ω-symmetry for some choice of θ and ω. From
this point of view, the family Cθ,ω allows for an adequate description of the set of C-symmetries
commuting with Asym.

Our proof below requires the existence of at least one real point λ of regular type for the
initial symmetric operator Asym, which is defined in the standard manner as: λ ∈ R is a point of
regular type of Asym if there exists a number k = k(λ) > 0 such that ‖(Asym −λI)u‖ � k‖u‖,
∀u ∈ D(Asym). This condition is not restrictive because it is satisfied for any symmetric
operator Asym having at least one self-adjoint extension A with spectrum σ(A) which does not
cover the whole real line R (i.e., σ(A) �= R).

Theorem 3.4. Let a symmetric operator Asym with deficiency indices 〈2, 2〉 have at least
one real point λ of regular type and let a J -self-adjoint extension AM(U) ⊃ Asym have the
property of C-symmetry, where C commutes with Asym. Then AM(U) also has the property of
Cθ,ω-symmetry for a certain choice of θ and ω.

The proof of theorem 3.4 is based on the following auxiliary result.

Lemma 3.5. Let Asym satisfy the conditions of theorem 3.4 and let AsymC = CAsym, where C is
a bounded linear operator in H with the properties: C2 = I and JC > 0. Then the restrictions
of C on M = Ni +̇ N−i coincide with the restrictions of Cθ,ω for a certain choice of θ and ω,
i.e., C � M = Cθ,ω � M.

Proof of theorem 3.4. Let the J -self-adjoint extension AM(U) ⊃ Asym have the property of
C-symmetry, where C commutes with Asym. Then CM(U) = M(U) by theorem 3.1. Since
M(U) ⊂ M, the last equality is equivalent to Cθ,ωM(U) = M(U) for a certain choice of θ

and ω by lemma 3.5. Using theorem 3.1 again one derives the property of Cθ,ω-symmetry for
AM(U). �

Proof of lemma 3.5. It follows from the proof of theorem 3.1 that CN±i = N±i . Therefore,

C has the block structure C = (C+ 0
0 C−

)
(C± := C � N±i ) with respect to the decomposition

M = Ni +̇ N−i .
Let us fix Ni and consider the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.29)

Since Ni = 〈e++, e+−〉, formulae (3.7) and (3.14) imply that J = σ3 and R = σ1 with
respect to the basis {e++, e+−}.

The conditions C2 = I and JC > 0 imposed on C in lemma 3.5 together with (3.18) enable
one to represent C as follows: C = e−χRω J , where due to (3.15) RωJ = −JRω,Rω = R∗

ω and
R2

ω = I . Obviously, the same relation must hold for the 2 × 2 matrix C+, i.e. C+ = e−χ+Rω1 σ3

with

Rω1 = R eiω1J = cos(ω1)σ1 + sin(ω1)σ2. (3.30)

From the relation R2
ω1

= I2 it follows

e−χ+Rω1 = cosh(χ+)I2 − sinh(χ+)Rω1 . (3.31)

12
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Identifying αθ1 = cosh(χ+), βθ1 = sinh(χ+) and using (3.30) we get for C+ = e−χ+Rω1 σ3 the
explicit representation

C+ =
(

αθ1 βθ1 e−iω1

−βθ1 eiω1 −αθ1

)
(3.32)

with respect to the basis {e++, e+−}.
On the other hand, relations (3.7), (3.16) and (3.18) mean that the operator Cθ1,ω1 � Ni has

the same matrix representation (3.32) with respect to {e++, e+−}. Therefore, C+ = C � Ni =
Cθ1,ω1 � Ni .

It should be noted that the parameters θ1, ω1 in (3.32) are not determined uniquely and
that the pairs θ1, ω1 and 1/θ1, ω1 −π define the same matrix C+. In what follows, without loss
of generality we will suppose θ1 � 1.

Arguing similarly one derives

C− =
(

αθ2 βθ2 e−iω2

−βθ2 eiω2 −αθ2

)
, θ2 � 1 (3.33)

with respect to the basis {e−+, e−−} of N−i and C− = Cθ2,ω2 �N−i .
Let us show that θ1 = θ2 and ω1 = ω2. To prove this we fix a real point λ of regular type

of Asym and consider an operator

A(u + xλ) = Asymu + λxλ, D(A) = D(Asym) +̇ N−λ (N−λ = H � R(Asym − λI)).

Since the real point λ is of regular type, the operator A is a self-adjoint extension of Asym.
Furthermore, the commutativity of Asym with the family {Cθ,ω} gives Cθ,ωN−λ = N−λ.
Therefore, ACθ,ω = Cθ,ωA for any choice of ω and θ . Thus A = AM(U) ∈ ϒ . In that
case proposition 3.3 allows one to simplify the general description M(U) given by (3.10) and
(3.11) as follows:

M(U) = 〈d1, d2〉, d1 = e++ + i eiξ e−+, d2 = e−− − i e−iξ e+−. (3.34)

Turning to the original operator C we deduce from the proof of theorem 3.1 that
C∗Asym = AsymC∗. This gives CN−λ = N−λ and hence, the operator A = AM(U) commutes
with C. Employing theorem 3.1 one derives CM(U) = M(U), where M(U) is defined
by (3.34). Taking relations (3.32) and (3.33) into account and arguing as in the proof of
theorem 3.2 we conclude that the equality CM(U) = M(U) is equivalent to the relations

αθ1 = αθ2 , βθ1 eiω1 = βθ2 eiω2 . (3.35)

The first relation in (3.35) gives θ := θ1 = θ2. If θ = 1, then the second relation in (3.35)
vanishes. In that case C1,ω1 = C1,ω2 = J and the restriction C �M coincides with J . If θ > 1
then βθ �= 0 and the second relation in (3.35) gives ω := ω1 = ω2. Hence, C � M = Cθ,ω.
Lemma 3.5 is proved. �

Remark 3.4. Physically, C± = exp[−χ±Rω1,2/2](J � N±i ) exp[χ±Rω1,2/2] in (3.32) and
(3.33) are just the hyperbolically rotated (boosted) versions of the involution J � N±i .
The transformation matrices exp[χ±Rω1,2/2] are the elements of the pseudounitary group
SU(1, 1) ∼= SO(1, 2) ∼= SL(2, R) [57] with Rω = e−iωJ/2 R eiωJ/2 in (3.30) as Lie algebra
elements conjugate to R under the transformations of the compact subgroup U(1) ∼= SO(2) �
eiωJ/2.
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3.6. The resolvent formula

As was stated above, the operator Asym commutes with the family {Cθ,ω}. Therefore, with
respect to the decomposition (3.19), Asym can be presented as the direct sum: Asym =
A+

sym +̇ A−
sym of the symmetric operators A±

sym = Asym � L
θ,ω
± acting in the subspaces L

θ,ω
±

of H.
Obviously, the defect subspaces N±i

(
A+

sym

) = L
θ,ω
+ �R

(
A+

sym±iI
)

of A+
sym coincide with

N±i ∩ L
θ,ω
+ , where N±i are the defect subspaces of Asym in H. Taking this fact and formulae

(3.16) into account it is easy to verify that Ni

(
A+

sym

) = 〈
g+

i (θ)
〉

and N−i

(
A+

sym

) = 〈
g+

−i (θ)
〉
,

where

g+
i (θ) =

(
I +

1 − αθ

βθ

Rω

)
e++, g+

−i (θ) =
(

I +
1 − αθ

βθ

Rω

)
e−+. (3.36)

Arguing similarly for A−
sym one derives Ni

(
A−

sym

) = 〈g−
i (θ)〉 and N−i

(
A−

sym

) = 〈g−
−i (θ)〉,

where the defect elements

g−
i (θ) =

(
I +

1 − αθ

βθ

Rω

)
e+−, g−

−i (θ) =
(

I +
1 − αθ

βθ

Rω

)
e−− (3.37)

belong to L
θ,ω
− .

Formulae (3.36) and (3.37) were obtained for θ �= 1. If θ = 1, then: g+
i (1) =

e++, g
+
−i (1) = e−+, g

−
i (1) = e+−, g−

−i (1) = e−−.
Note that the norms of g±

±i (θ) are equal to
√

αθ/(αθ + 1). Indeed, the orthonormality of
{e±±} in M and relations (3.1) and (3.12) imply ‖e±±‖2 = 1/2. Taking (3.16) into account
we deduce from (3.36)∥∥g+

i (θ)
∥∥2 = ‖e++‖2 +

(
1 − αθ

βθ

)2

‖e+−‖2 = αθ

αθ + 1
.

The other elements g±
±i (θ) are considered by analogy.

Let us fix an arbitrary extension center element A = AM(U) ∈ ϒ . According to the
definition of ϒ (subsection 3.4), A is a self-adjoint extension of Asym and A is reduced by the
decomposition (3.19) for an arbitrary choice of θ and ω. The collection of unitary matrices
U corresponding to the operators AM(U) ∈ ϒ is described by (3.28) with φ ∈ {

π
2 , 3π

2

}
.

This means that, without loss of generality (multiplying e+− and e−+ by suitable unimodular
constants if it is necessary), one can assume that the operator A = AM(U) is defined by the

matrix U = ( 0 −1
−1 0

)
.

Obviously, A is decomposed into A = A+ +̇ A− with respect to (3.19), where A± are the
self-adjoint extensions of the symmetric operators A±

sym acting in the spaces L
θ,ω
± and having

the deficiency index 〈1, 1〉 (due to (3.36) and (3.37)). It is easy to see that for arbitrary θ

and ω

D(A+) = D
(
A+

sym

)
+̇
〈
g+

i (θ) − g+
−i (θ)

〉
, D(A−) = D

(
A−

sym

)
+̇
〈
g−

i (θ) − g−
−i (θ)

〉
.

Let AM(U) be an arbitrary J -self-adjoint extension of Asym with Cθ,ω-symmetry. Then
the matrix U has the form (3.28) (by theorem 3.3) and the operator AM(U) is reduced by the
decomposition (3.19) ( for fixed θ and ω). Therefore, AM(U) = A+

M(U) +̇ A−
M(U), where A±

M(U)

are intermediate extensions of A±
sym in L

θ,ω
± . A direct calculation shows

D
(
A±

M(U)

) = D
(
A±

sym

)
+̇
〈
g±

i (θ) + p±g±
−i (θ)

〉
,

where

p+ = ei(ξ+μ), p− = −ei(ξ−μ)

(
eiμ := cos φ + iαθ sin φ

|cos φ + iαθ sin φ|
)

. (3.38)
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Theorem 3.5. Let A ∈ ϒ and let AM(U) be an arbitrary J -self-adjoint extension of Asym with
Cθ,ω-symmetry (i.e., the matrix U is determined by (3.28)). Then, for any z ∈ C\R,

1

AM(U) − z
= 1

A − z
+

αθ(αθ + 1)

αθ tan ξ+μ

2 − Q(z)

(
A + i

A − z
·, g+

i (1/θ)

)
A − i

A − z
g+

i (θ)

− αθ(αθ + 1)

αθ cot ξ−μ

2 + Q(z)

(
A + i

A − z
·, g−

i (1/θ)

)
A − i

A − z
g−

i (θ),

where μ = μ(φ, θ) is determined in (3.38) and Q(z) = 2
(

1+zA
A−z

e++, (αθ I − βθRω)e++
)
.

Proof. Let z ∈ C\R be fixed. Considering A+ and A+
M(U) as one-dimensional perturbations

of the symmetric operator A+
sym in the space L

θ,ω
+ and repeating the standard arguments (see,

e.g., [[48], pp 23–28]), one derives the Krein-type resolvent formula:

1

A+
M(U) − z

= 1

A+ − z
+

1

i 1−p+

1+p+

αθ

αθ +1 − Q̃(z)

(
A + i

A − z
·, g+

i (θ)

)
A − i

A − z
g+

i (θ). (3.39)

Here, the notation 1
B−zI

= (B − zI)−1 is used and Q̃(z) = (
1+zA
A−z

g+
i (θ), g+

i (θ)
)

is Krein’s Q
function [48]. Similarly, the formula

1

A−
M(U) − z

= 1

A− − z
+

1

i 1−p−
1+p−

αθ

αθ +1 − Q′(z)

(
A + i

A − z
·, g−

i (θ)

)
A − i

A − z
g−

i (θ) (3.40)

relates the resolvents of A− and A−
M(U) in L

θ,ω
− . Here Q̃′(z) = ( 1+zA

A−z
g−

i (θ), g−
i (θ)

)
.

Let us slightly simplify these formulae. First,

i
1 − p+

1 + p+
= tan

ξ + μ

2
and i

1 − p−
1 + p−

= −cot
ξ − μ

2

due to (3.38). Further, it follows from (3.36), (3.37) and (3.16) that

Rωg−
i (θ) =

(
I +

1 − αθ

βθ

Rω

)
Rωe+− = e−iω g+

i (θ).

Since A ∈ ϒ and therefore, A commutes with Rω (see the proof of proposition 3.2) one
concludes

Q̃′(z) =
(

Rω

1 + zA

A − z
g−

i (θ), Rωg−
i (θ)

)
=
(

1 + zA

A − z
Rωg−

i (θ), Rωg−
i (θ)

)
= Q̃(z).

Furthermore, employing (3.36), one derives

Q̃(z) =
(

1 + zA

A − z
e++,

(
I +

1 − αθ

βθ

Rω

)2

e++

)
= αθ − 1

β2
θ

Q(z),

where Q(z) = 2
(

1+zA
A−z

e++, (αθ I − βθRω)e++
)
.

Combining (3.39) and (3.40) with the expressions above and taking into account that the
formula f = (I+Cθ,ω)

2 f + (I−Cθ,ω)

2 f gives the decomposition of an arbitrary element f ∈ H into
its L

θ,ω
± -parts, one gets (after trivial calculations) the following resolvent formula in H:

1

AM(U) − z
= 1

A − z
+

β2
θ

(αθ − 1)
[
αθ tan ξ+μ

2 − Q(z)
] ( A + i

A − z

I + Cθ,ω

2
·, g+

i (θ)

)
A − i

A − z
g+

i (θ)

− β2
θ

(αθ − 1)
[
αθ cot ξ−μ

2 + Q(z)
] ( A + i

A − z

I − Cθ,ω

2
·, g−

i (θ)

)
A − i

A − z
g−

i (θ).
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It follows from (3.7), (3.16), (3.18), (3.20) and (3.36) that

(I + C∗
θ,ω)g+

i (θ) = (I + C1/θ,ω)g+
i (θ) = 2αθ

(
e++ − 1 − αθ

βθ

eiω e+−

)
= 2αθg

+
i (1/θ).

Therefore, for any f ∈ H,(
A + i

A − z

I + Cθ,ω

2
f, g+

i (θ)

)
=
(

I + Cθ,ω

2

A + i

A − z
f, g+

i (θ)

)
= αθ

(
A + i

A − z
f, g+

i (1/θ)

)
.

Similarly, (I − C∗
θ,ω)g−

i (θ) = 2αθg
−
i (1/θ) and(

A + i

A − z

I − Cθ,ω

2
f, g−

i (θ)

)
= αθ

(
A + i

A − z
f, g−

i (1/θ)

)
.

Substituting the obtained expressions into the above resolvent formula and taking the evident

relation αθ β
2
θ

αθ−1 = αθ (αθ +1)β2
θ

α2
θ −1

= αθ(αθ + 1) into account, we complete the proof of theorem 3.5.
�

Let AM be an arbitrary J -self-adjoint operator with C-symmetry. This means that AM is
similar to a self-adjoint operator (see corollary 2.1) and, hence, one can define the essential
spectrum σess(AM) in analogy with that of self-adjoint operators8.

Corollary 3.1. Let the spectrum of A ∈ ϒ be purely essential (i.e., σ(A) = σess(A)) and
let AM(U) be an arbitrary J -self-adjoint extension of Asym with Cθ,ω-symmetry. Then the
essential spectrum of AM(U) coincides with σess(A) and the discrete spectrum σdisc(AM(U)) is
determined as the solutions of the equation[

αθ tan
ξ + μ

2
− Q(z)

]
·
[
αθ cot

ξ − μ

2
+ Q(z)

]
= 0, z ∈ R\σess(A), (3.41)

where Q(z) = 2
(

1+zA
A−z

e++, (αθ I − βθRω)e++
)
.

The proof of corollary 3.1 immediately follows from the resolvent formula in theorem 3.5
if one takes into account the following arguments: (1) A and AM(U) are self-adjoint in H with
respect to the inner product (·, ·)C (subsection 2.2) and they are reduced by the decomposition
H = L

θ,ω
+ ⊕C L

θ,ω
− (see (3.19)); (2) the second and third parts on the right-hand side of the

resolvent formula belong to L
θ,ω
+ and L

θ,ω
− , respectively (since g±

i (θ) ∈ L
θ,ω
± ).

4. Examples

4.1. The Schrödinger operator with a general zero-range potential

A one-dimensional Schrödinger operator corresponding to a general zero-range potential at
the point x = 0 can be given by the expression

− d2

dx2
+ t11〈δ, ·〉δ + t12〈δ′, ·〉δ + t21〈δ, ·〉δ′ + t22〈δ′, ·〉δ′, (4.1)

where δ and δ′ are, respectively, the Dirac δ-function and its derivative (with support at 0) and
tij are complex numbers.

8 For a self-adjoint operator A the essential spectrum σess(A) is obtained by removing from σ(A) all isolated
eigenvalues of finite multiplicity.
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The standard approach [48] enables one to consider an operator realization AT (T = ‖tij‖)
of (4.1) in L2(R) by setting

AT = Areg �D(AT ), D(AT ) = {f ∈ W 2
2 (R\{0}) : Aregf ∈ L2(R)

}
, (4.2)

where the regularization of (4.1) onto W 2
2 (R\{0}) has the form

Areg = − d2

dx2
+ t11〈δex, ·〉δ + t12〈δ′

ex, ·〉δ + t21〈δex, ·〉δ′ + t22〈δ′
ex, ·〉δ′.

Here, − d2

dx2 acts on W 2
2 (R\{0}) in the distributional sense and

〈δex, f 〉 = f (+0) + f (−0)

2
, 〈δ′

ex, f 〉 = −f ′(+0) + f ′(−0)

2

for all f ∈ W 2
2 (R\{0}).

An operator realization AT of (4.1) is an intermediate extension (i.e., Asym ⊂ AT ⊂A∗
sym)

of the symmetric operator

Asym = − d2

dx2
�
{
u ∈ W 2

2 (R) : u(0) = u′(0) = 0
}

(4.3)

associated with (4.1).
Let P be the space parity operator (Pf (x) = f (−x)) in L2(R). The family of P-self-

adjoint operator realizations AT of (4.1) is distinguished by the conditions t11, t22 ∈ R, t21 =
−t12 imposed on the entries tij of T [50]. Another description of P-self-adjoint extensions of
Asym can be found in [49].

Let us consider the fundamental symmetry Rf (x) = sign(x)f (x) in L2(R). Obviously,
PR = −RP . Since the operator Asym in (4.3) has the deficiency indices 〈2, 2〉 and commutes
with J ≡ P and R, one can define the family of Cθ,ω-symmetries by (3.15) and (3.18).

Theorem 4.1. A P-self-adjoint operator realization AT of (4.1) has the property of C-
symmetry, where C commutes with Asym if and only if there exist θ > 0, ω, φ, ξ ∈ [0, 2π) such
that the matrix T has the form

T = 2

�

⎛⎝√
2(αθ sin φ −

√
1 + β2

θ sin2 φ cos ξ) −βθ cos φ e−iω

βθ cos φ eiω −√
2(αθ sin φ −

√
1 + β2

θ sin2 φ sin ξ)

⎞⎠ ,

where � = αθ(cos φ − sin φ) +
√

1 + β2
θ sin2 φ(cos ξ + sin ξ). In that case AT has Cθ,ω-

symmetry.

Proof. Since Asym is non-negative, the existence of C-symmetry for AT , where CAsym =
AsymC, is equivalent to the Cθ,ω-symmetry of AT for some choice of θ > 0 and ω ∈ [0, 2π)

(see theorem 3.4).
The family of P-self-adjoint extensions AM(U) of Asym having the property of Cθ,ω-

symmetry is described in theorem 3.3. Therefore, the proof of theorem 4.1 consists of finding
direct connections between the parameters of matrices U in (3.28) and the entries tij of T
providing the equality AT = AM(U). To do this, we note that the defect subspaces N+i

and N−i of Asym coincide, respectively, with the linear spans of the functions 〈h1+, h2+〉 and
〈h1−, h2−〉, where

h1±(x) =
{

eiτ±x, x > 0
e−iτ±x, x < 0

h2±(x) =
{−eiτ±x, x > 0

e−iτ±x, x < 0
(4.4)

and τ± = ± 1√
2

+ i 1√
2

(
τ 2
± = ±i

)
.
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Since Ph1± = h1± and Ph2± = −h2±, the orthonormal basis {e±±} of the Hilbert space
M = N−i +̇ Ni (see (3.1)) takes the form:

e++ = αh1+, e+− = αh2+, e−+ = αh1−, e−− = αh2−, (4.5)

where α = 2−3/4 is a normalizing constant.
Let a P-self-adjoint operator AT be determined by (4.2). It is known [50] that AT can be

described as the restriction of A∗
sym on

D(AT ) = {f ∈ W 2
2 (R\{0}) : T �0f = �1f

}
, (4.6)

where

�0f = 1

2

(
f (+0) + f (−0)

−f ′(+0) − f ′(−0)

)
and �1f =

(
f ′(+0) − f ′(−0)

f (+0) − f (−0)

)
.

It follows from (3.10) and theorem 3.3 that AT has Cθ,ω-symmetry if and only if
D(AT ) = D(AM(U)) = D(Asym) +̇ M(U), where M(U) is the linear span of

d1 = e++ − βθ

αθ

cos φ ei(φ+ω) e+− +
1

αθ

√
1 + β2

θ sin2 φ ei(φ+ξ) e−+,

d2 = e−− − 1

αθ

√
1 + β2

θ sin2 φ ei(φ−ξ) e+− − βθ

αθ

cos φ ei(φ−ω) e−+.

(4.7)

The boundary values �id1 and �id2 (i = 0, 1) can easily be calculated with the help
of (4.5). Substituting these values into (4.6) instead of �if one derives a system of linear
equations with respect to tij . Its solution (the matrix T in theorem 4.1) gives the general
form of all T such that AT = AM(U). Only in this case the operator AT has Cθ,ω-symmetry.
Theorem 4.1 is proved. �

Combining the description of ϒ given in proposition 3.3 with formulae (4.5) and (4.7)
leads to the conclusion that a P-self-adjoint extension AM(U) of Asym belongs to ϒ if and
only if

D(AM(U)) = {f ∈ W 2
2 (R\{0}) : f (+0) = cf ′(+0); f (−0) = −cf ′(−0)

}
,

where c ∈ R∪{∞}. So, operators from ϒ are characterized by separated boundary conditions
and they are just the second derivative self-adjoint operators on the half-lines. In particular,
the operator A ∈ ϒ which has been used in theorem 3.5 corresponds to the case c = 0, i.e.,

D(A) = {f ∈ W 2
2 (R\{0}) : f (+0) = 0; f (−0) = 0

}
.

This operator is the Friedrichs extension of Asym and the spectrum of A is purely absolutely
continuous and it coincides with [0,∞). According to corollary 3.1, the discrete spectrum
of an arbitrary P-self-adjoint extension AM(U) is determined by (3.41), where Q(z) can be
calculated in an explicit form with the use of (4.4) and (4.5): Q(z) = k(z)αθ , where

k(z) = 4
√

2

π

∫ ∞

0

y2(1 + zy2)

(y2 − z)(y4 + 1)
dy.

Therefore, AM(U) has a negative eigenvalue z if and only if[
tan

ξ + μ

2
− k(z)

]
·
[

cot
ξ − μ

2
+ k(z)

]
= 0, (4.8)

where μ = μ(θ, φ) is determined by (3.38). The formula (4.8) does not depend on ω in
(3.28). This means that the discrete spectrum of AM(U)(U = U(θ, ω,ψ, ξ)) does not depend
on the choice of ω.
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4.2. One-dimensional Dirac operator with point perturbation

Let us consider the free Dirac operator D in the space L2(R) ⊗ C
2:

D = −ic
d

dx
⊗ σ1 +

c2

2
⊗ σ3, D(D) = W 1

2 (R) ⊗ C
2,

where σ1, σ3 are Pauli matrices (see (3.29)) and c > 0 denotes the velocity of light.
The symmetric Dirac operator Asym = D �

{
u ∈ W 1

2 (R) ⊗ C
2 : u(0) = 0

}
has the

deficiency indices 〈2, 2〉 [47, 58] and it commutes with the fundamental symmetry J = P ⊗ σ3

in L2(R) ⊗ C
2. Here u(·) = (u1(·)

u2(·)
) ∈ W 1

2 (R) ⊗ C
2.

The defect subspaces Ni and N−i of Asym coincide, respectively, with the linear spans of
the functions 〈h1+, h2+〉 and 〈h1−, h2−〉, where

h1±(x) =
(−i e∓it

sign(x)

)
eiτ |x|, h2±(x) = sign(x)h1±(x), x ∈ R, (4.9)

τ = i
c

√
c4

4 + 1, and eit := ( c2

2 − i
)(√

c4

4 + 1
)−1

.
Since Jh1± = h1± and Jh2± = −h2±, the orthonormal basis {e±±} of the Hilbert space

M = N−i +̇ Ni (see (3.1)) takes the form:

e++ = αh1+, e+− = αh2+, e−+ = αh1−, e−− = αh2−, (4.10)

where α is a normalizing constant providing ‖e±±‖M = 1.
The adjoint operator A∗

sym = −i d
dx

⊗ σ1 + m ⊗ σ3 is defined in the domain D(A∗
sym) =

W 1
2 (R\{0}) ⊗ C

2 , and an arbitrary J -self-adjoint extension AM(U) of Asym is the restriction
of A∗

sym on D(AM(U)) = D(Asym) +̇ M(U), where M(U) is defined by (3.10) and (3.11) with
e±± determined by (4.10). Other descriptions of J -self-adjoint extensions of Asym can be
found in [47, 59, 58].

To construct the family of Cθ,ω-symmetries for J -self-adjoint extensions AM(U) one needs
to find a fundamental symmetry R in L2(R) ⊗ C

2 such that

JR = −RJ and AsymR = RAsym.

Obviously, these relations are satisfied for R = sign(x)I . In that case one can define the
collection of Cθ,ω-symmetries by (3.18). According to theorem 3.3, a family of J -self-
adjoint extensions {AM(U)} having at least one Cθ,ω-symmetry is described by subspaces
M(U) = 〈d1, d2〉, where di are determined by (4.7) and (4.10). In the particular case
AM(U) ∈ ϒ (i.e., AM(U) commutes with any Cθ,ω), relation (3.34) must be used instead of
(4.7). A routine calculation gives AM(U) ∈ ϒ if and only if

D(AM(U))=

⎧⎪⎪⎨⎪⎪⎩f ∈W 1
2 (R\{0}) ⊗ C

2:

i cos

(
ξ

2
+

π

4

)
f1( + 0) = cos

(
t +

ξ

2
+

π

4

)
f2(+0)

−i cos

(
ξ

2
+

π

4

)
f1(−0) = cos

(
t +

ξ

2
+

π

4

)
f2(−0)

⎫⎪⎪⎬⎪⎪⎭,

where t is determined in (4.9) and ξ ∈ [0, 2π). Hence, as in the case of a Schrödinger operator,
the elements of ϒ are characterized by separated boundary conditions. The operator A ∈ ϒ

in the resolvent formula (see theorem 3.5) corresponds to the case ξ = π
2 , i.e.,

D(A) = {f ∈ W 1
2 (R\{0}) ⊗ C

2 : f2(+0) = f2(−0) = 0
}
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(cos(t + π
2 ) �= 0 by the definition of t). Since

A2 =
(

−c2 d2

dx2
+

c4

4

)
⊗ I, D(A2) =

{
f ∈ W 2

2 (R\{0}) ⊗ C
2:

f ′
1(+0) = f ′

1(−0) = 0

f2(+0) = f2(−0) = 0

}
the spectrum of A is purely absolutely continuous and coincides with (−∞,−c2/2] ∪
[c2/2,∞).

Let AM(U) be a J -self-adjoint extension of Asym withCθ,ω-symmetry. Then AM(U) turns out
to be self-adjoint in L2(R) ⊗ C

2 with respect to the inner product (·, ·)Cθ,ω
. The corresponding

resolvent formula is given in theorem 3.5; the essential spectrum of AM(U) coincides with
(−∞,−c2/2] ∪ [c2/2,∞) and its bound states z ∈ (−c2/2, c2/2) can be found as solutions
of (3.41).

5. Conclusions

In this paper von Neumann’s self-adjoint extension technique for symmetric operators has
been reshaped to provide J -self-adjoint extensions of symmetric operators with arbitrary but
equal deficiency indices 〈n, n〉, n ∈ N ∪ ∞. The crucial role is played by a bijection between
the resulting family of J -self-adjoint operators and the hypermaximal neutral subspaces of
the defect Krein space. It is proven that the C operators of the resulting Hamiltonians leave
the defect Krein spaces invariant. For J -self-adjoint extensions of symmetric operators with
deficiency indices 〈2, 2〉 the parametrization of the C-operator family is worked out in detail and
Krein-type resolvent formulae are constructed. The technique is exemplified on 1D pseudo-
Hermitian Schrödinger and Dirac Hamiltonians with complex point-interaction potentials.

Due to their specific structure, Hamiltonians obtained as J -self-adjoint extensions of
symmetric operators provide an excellent playing ground for studies on the Krein-space related
features of pseudo-Hermitian and PT -symmetric operators. The advantages of such model
Hamiltonians have their origin in the following properties. For sufficiently simple symmetric
differential operators the models remain exactly solvable. They have rich parameter spaces
which are bijectively related to the hypermaximal neutral subspaces of the defect Krein
spaces of the symmetric operators. As differential operators the resulting pseudo-Hermitian
Hamiltonians possess, in general, much richer spectra than simple matrix Hamiltonians,
i.e., apart from discrete spectra they will have continuous and, possibly, residual spectra.
Corresponding resolvent studies can be carried out in full detail with exact results. In this
way, these Hamiltonians have the capability to provide some deeper insights into the structural
subtleties of pseudo-Hermitian and PT -symmetric quantum theories.
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[24] Caliceti E, Graffi S and Sjöstrand J 2007 J. Phys. A: Math. Theor. 40 10155–70 (arXiv:0705.4218)
[25] Graefe E-M, Günther U, Korsch H-J and Niederle A 2008 J. Phys. A: Math. Theor. 41 255206

(arXiv:0802.3164)
[26] Mostafazadeh A 2002 J. Math. Phys. 43 205–14 (arXiv:math-ph/0107001)
[27] Azizov T Y and Iokhvidov I S 1989 Linear Operators in Spaces with Indefinite Metric (Chichester: Wiley)
[28] Dijksma A and Langer H 1996 Operator theory and ordinary differential operators Fields Institute Monographs

(Lectures on Operator Theory and its Applications vol 3) ed A Böttcher et al (Providence, RI: American
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